The temperature induced structural transformation in $\mathrm{Gd}_{5} \mathrm{Si}_{x} \mathrm{Sn}_{4-x}(x=0$ and 0.4)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys.: Condens. Matter 163053
(http://iopscience.iop.org/0953-8984/16/18/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 27/05/2010 at 14:34

Please note that terms and conditions apply.

The temperature induced structural transformation in $\mathbf{G d}_{5} \mathbf{S i}_{x} \mathbf{S n}_{4-x}(x=0$ and 0.4$)$

H B Wang, Z Altounian ${ }^{1}$ and D H Ryan
McGill University, Centre for the Physics of Materials, Department of Physics, Rutherford Physics Building, 3600 University Street, Montreal, QC, H3A 2T8, Canada
E-mail: Altounian@physics.mcgill.ca

Received 16 February 2004
Published 23 April 2004
Online at stacks.iop.org/JPhysCM/16/3053
DOI: 10.1088/0953-8984/16/18/006

Abstract

Low temperature synchrotron x-ray diffraction data confirm that a temperature induced structural transformation accompanies the previously reported firstorder magnetic transition in $\mathrm{Gd}_{5} \mathrm{Si}_{x} \mathrm{Sn}_{4-x}(x=0$ and 0.4). The structural change is from the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type (room temperature) to the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type (low temperature). The transformation in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ is not complete by 20 K , with about 13% of the high temperature $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type structure remaining. These results are in excellent agreement with previous Mössbauer and magnetic measurements.

1. Introduction

Interest in magnetocaloric materials was rekindled by the discovery of the near room temperature giant magnetocaloric (GMC) effect in $\mathrm{Gd}_{5} \mathrm{Si}_{x} \mathrm{Ge}_{4-x}(0.96 \leqslant x \leqslant 2.0)$ [1]. The GMC effect is the result of a magnetostructural transition from monoclinic-paramagnetic to orthorhombic-ferromagnetic upon cooling [2, 3]. Recently, a similar effect has been reported in Ge-rich $\mathrm{Gd}_{5} \mathrm{Si}_{x} \mathrm{Ge}_{4-x}$ compounds $(0 \leqslant x \leqslant 0.4)$ [4-7]. Here, the magnetostructural transformation is from orthorhombic $\left(\mathrm{Gd}_{5} \mathrm{Ge}_{4}\right.$-type)-antiferromagnetic to orthorhombic $\left(\mathrm{Gd}_{5} \mathrm{Si}_{4}\right.$-type)-ferromagnetic. In both cases, the magnetostructural transition can be induced by temperature, magnetic field or pressure. The high neutron absorption cross section of natural gadolinium limits the direct determination of the magnetic and crystal structures for $\mathrm{Gd}_{5} \mathrm{Si}_{x} \mathrm{Ge}_{4-x}$ compounds. Thus, GMC studies have expanded to other $\mathrm{R}_{5} \mathrm{Si}_{x} \mathrm{Ge}_{4-x}$ pseudobinary systems (R is a rare earth element) [8-10], where neutron diffraction can be used to characterize the magnetic structure.

An alternative approach is to substitute Ge by Sn and use ${ }^{119} \mathrm{Sn}$ Mössbauer spectroscopy to study the magnetic and chemical environment of each crystallographically

[^0]inequivalent Sn atom. This has led to the observation of a first-order magnetic transition (from ferromagnetic to nonmagnetic) at 82 K in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ and at 106 K in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ [11]. We suggested that the magnetic transition is likely to be coupled with a structural transition in these compounds. Subsequent bulk magnetization and ${ }^{119} \mathrm{Sn}$ Mössbauer spectroscopy studies on $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ with an applied magnetic field confirmed that $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ exhibits a giant magnetocaloric effect [12] associated with the first-order magnetic change at 82 K , and that this transition can be reversed by an external magnetic field. Moreover, our ${ }^{119} \mathrm{Sn}$ Mössbauer study on $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ revealed that [11]:
(1) a weak broad singlet is still present at 12 K , accounting for about 4% of the total area;
(2) upon warming, the sharp magnetic components persist to 80 K , with the nonmagnetic singlet accounting for only about 37% of the total area;
(3) on passing through 80 K , the sharp magnetic components vanish abruptly.

These results demonstrated that temperature drives a first-order magnetic transformation in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$, and that this transformation is not complete at 80 K upon warming. We also inferred that the magnetic transition is likely to be accompanied with a structural change between two closely related orthorhombic forms as seen in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Ge}_{3.6}$ [5].

Recently, Yang et al [13] studied $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ by temperature dependent $\mathrm{Cu} \mathrm{K} \alpha$ x-ray diffraction and did not observe the predicted structural transition on cooling to 80 K . This might appear to conflict with our expectations based on ${ }^{119} \mathrm{Sn}$ Mössbauer data [11, 12]; however, the structural transition is first-order and some hysteresis is inevitable. Reported transition widths in related systems range from $\sim 5 \mathrm{~K}$ in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Ge}_{3.6}$ [14] to $\sim 12 \mathrm{~K}$ in $\mathrm{Gd}_{5} \mathrm{Si}_{1.5} \mathrm{Ge}_{2.5}$ [15]. Given that we observed the transition to be at 82 K on heating, it is likely that cooling below 80 K is necessary to induce a measurable degree of transformation.

We have therefore performed synchrotron x-ray experiments down to a much lower temperature $(20 \mathrm{~K})$ to avoid temperature hysteresis and obtain accurate structural information. In particular, the changes in lattice parameters and the $\mathrm{Sn}-\mathrm{Sn}$ interatomic distances, which characterize the difference of $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type structures [16, 17], were calculated. In this paper, we present low temperature synchrotron x-ray results on $\mathrm{Gd}_{5} \mathrm{Si}_{x} \mathrm{Sn}_{4-x}$ with $x=0$ and 0.4 .

2. Experimental methods

$\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ ingots were prepared in a tri-arc furnace with a base pressure of 6×10^{-7} mbar. Stoichiometric amounts of Gd ($99.9 \mathrm{wt} \%$, purchased from Alfa Aesar), Si ($99.9999 \mathrm{wt} \%$) and $\mathrm{Sn}(99.99 \mathrm{wt} \%)$ were melted under pure argon. To ensure homogeneity, the alloys were remelted several times. The compounds were air-sensitive, so all sample handling was performed in a glove box under a pure argon atmosphere. The powder samples were sealed in evacuated quartz tubes for transportation.

Synchrotron x-ray experiments were carried out at Beamline 2-1 of the Stanford Synchrotron Radiation Laboratory. The x-ray energy was chosen as $7200 \mathrm{eV}(1.7217 \AA)$, just below the Gd L-edge to increase the penetration depth ($\sim 6 \mu \mathrm{~m}$) while retaining a high angular resolution for the Bragg peaks. Low temperatures were achieved using a vibrationisolated closed-cycle He-refrigerator. The step size for all diffraction patterns was fixed at 0.02° of 2θ.

The synchrotron x-ray data at 295 K for $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ were collected between 28° and 110° to permit accurate determination of the atomic thermal parameters during the structural refinement. Low temperature data were collected between 28° and 90°. The diffraction patterns were refined by the Rietveld method using the GSAS program [18].

Table 1. Refined structural parameters for $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ at 295 and 20 K .

Atom	295 K			20 K		
	$a=8.0446$ (3)	$b=15.5404(5)$	$c=8.2025(3)$	$a=7.9263$ (2)	$b=15.4965(5)$	$c=8.2278(2)$
	x / a	y / b	z / c	x / a	y / b	z / c
Gd1(4c)	0.3112(8)	0.25	-0.0063(6)	0.3405(11)	0.25	0.0042(7)
Gd2(8d)	-0.0245 (5)	0.1000(2)	0.1786(5)	0.0008(7)	0.0942(3)	0.1782(4)
Gd3(8d)	$0.3556(5)$	0.8782(3)	0.1577(5)	0.3326(6)	0.8761(3)	0.1780(5)
Sn1(4c)	0.1759(8)	0.25	0.3523(7)	0.2112(10)	0.25	0.3481(8)
Sn2(4c)	0.9507(9)	0.25	0.8817(7)	0.9630(12)	0.25	0.8993(8)
Sn3(8d)	0.2051(7)	0.9595(3)	0.4669(6)	0.1746(8)	0.9602(3)	0.4691(5)

Texture effects were observed in the powder patterns, and the spherical harmonic function (in the GSAS program) was used to correct for the effects of preferential orientation.

Mössbauer spectra were collected using a $74 \mathrm{MBq}{ }^{119 \mathrm{~m}} \mathrm{Sn} \mathrm{BaSnO}_{3}$ source. The system was calibrated using α - Fe and a ${ }^{57} \mathrm{Co}$ source. The temperature was varied from 12 K to room temperature using a vibration-isolated closed-cycle refrigerator.

3. Results and discussion

The x-ray pattern of $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ at 295 K is shown with the fit and difference plot in figure 1(a). Analysis of the x-ray pattern indicates that $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ adopts the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$ type structure at 295 K , with $a=8.0446(3) \AA, b=15.5404(5) \AA$ and $c=8.2025(3) \AA$. The atomic positions are given in table 1. About $5 \mathrm{wt} \%$ of the impurity phase $\mathrm{Gd}_{11} \mathrm{Sn}_{10}$ was also present.

Figure 1(b) shows the synchrotron x-ray pattern of $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ at 20 K . Pattern refinement demonstrates that $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ adopts the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type structure at 20 K , with $a=7.9263(2) \AA, b=15.4965(5) \AA$ and $c=8.2278(2) \AA$. The structural transformation is incomplete, and about 13% of the $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type structure still remains at 20 K . Atomic positions at 20 K are listed in table 1.

Our previous ${ }^{119} \mathrm{Sn}$ Mössbauer spectroscopy study [12] suggests that about 6% (interpolated value) of the material would be present in the room temperature structure type at 20 K upon warming, in agreement with 13% obtained from the analysis of the synchrotron x-ray pattern at 20 K upon cooling. The difference between these values is likely due to thermal hysteresis associated with the first-order nature of the structural transition. The synchrotron x-ray diffraction at 20 K confirms that the magnetic transition in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ is indeed associated with a structural change between two closely related orthorhombic structures.

Synchrotron x-ray data for $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ were collected at temperatures of 295, 106, 95 and 15 K . To highlight the subtle differences in the diffraction patterns at different temperatures, the x-ray patterns are shown in the 2θ range of 32° and 42° in figure 2 . The crystal structure of the $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ sample has the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type structure at 295 K , with $\mathrm{Gd}_{5} \mathrm{Sn}_{3}$ and $\mathrm{Gd}_{11} \mathrm{Sn}_{10}$ as impurity phases. Refinement of the patterns at different temperatures reveals that the material at both room temperature and 106 K adopts the $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type structure, while at 95 and 15 K the structure is of the $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type.

The two orthorhombic structures are closely related, and as a consequence share many Bragg peaks. To distinguish the two structures, we have highlighted, in figure 2, those peaks that are unique to each structure. The downward facing arrows indicate the distinct Bragg peaks

Figure 1. Synchrotron x-ray diffraction patterns of $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ at 295 K (a) and 20 K (b). The Bragg markers (from top to bottom) are $\mathrm{Gd}_{11} \mathrm{Sn}_{10}$ and $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ in the 295 K pattern, and $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ $\left(\mathrm{Gd}_{5} \mathrm{Si}_{4}\right.$-type), $\mathrm{Gd}_{11} \mathrm{Sn}_{10}$ and $\mathrm{Gd}_{5} \mathrm{Sn}_{4}\left(\mathrm{Gd}_{5} \mathrm{Ge}_{4}\right.$-type) in the 20 K pattern.
corresponding to the $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type (high- T), and the upward facing arrows indicate those from the $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type (low- T) structures. The change in structure is clearly observed upon cooling. Figure 3(a) shows ${ }^{119} \mathrm{Sn}$ Mössbauer spectra of $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ at several temperatures upon warming. The central component becomes more prominent, at the expense of the magnetic components, as the structure changes on heating. Similar changes were seen in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ [11]. As figure 3(b) shows, the magnetic components disappear between 105 and 110 K , confirming the magnetic transition seen at $\sim 106 \mathrm{~K}$ in AC-susceptibility data [11]. On passing through the

Figure 2. Synchrotron x-ray diffraction patterns of $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ at different temperatures. The downward facing arrows indicate the distinct Bragg peaks corresponding to the high- $T \mathrm{Gd}_{5} \mathrm{Ge}_{4}$ type structure, and the upward facing arrows indicate those to the low- $T \mathrm{Gd}_{5} \mathrm{Si}_{4}$-type structure.

Figure 3. (a) ${ }^{119}$ Sn Mössbauer spectra of $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ at several temperatures. This sample shows a transition above 105 K as the magnetic components disappear. (b) The temperature dependence of the hyperfine fields for the $\operatorname{sharp}(\Delta$ and \square) and Gaussian-broadened (\diamond) components (top). The sharp sextets are lost on passing through 105 K . The area of the magnetic contributions to the ${ }^{119} \mathrm{Sn}$ Mössbauer spectra of $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ (bottom).
magnetic ordering temperature $(\sim 106 \mathrm{~K}), \mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ undergoes a structural transformation. Therefore, the magnetostructural transition seen in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ also occurs in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$.

Figure 4. The temperature dependence of the lattice parameters and the length of the M3-M3 (8d site) bonds in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$. The data were obtained from the refinement of synchrotron x-ray diffraction patterns at different temperatures.

Figure 4 shows the temperature dependence of the lattice parameters for $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$. On passing through the magnetic transition temperature, a large change along the a axis is observed. The relative change in the a parameter between 295 and 20 K for $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ is $\Delta a / a=-1.1 \%$, while for $\mathrm{Gd}_{5} \mathrm{Sn}_{4} \Delta a / a=-1.5 \%$. The contractions in a exceed those of b and c by a factor of nearly 5 in both alloys, implying that the structural changes cause the atoms to shift primarily along the a axis upon cooling through the magnetic transition. Furthermore, the changes between the $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type and $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type structures are dominated by a large change in the length of the M3-M3 bonds $(\mathrm{M}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ or a mixture of Si and Sn on the 8 d site) [16, 17], with the M3-M3 bonds being significantly longer in $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type compounds than they are in $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type compounds. Figure 4 shows the temperature dependence of the M3-M3 bond length in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$. An abrupt reduction of 15% is clearly seen upon cooling through the magnetic transition. Refinement of the $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ patterns also shows that the largest change in interatomic distance occurs between Sn atoms on the M 3 sites in the different layers. On passing through the magnetic transition temperature, the distance between the M3 sites changes from $3.57 \AA(295 \mathrm{~K})$ to $3.07 \AA(20 \mathrm{~K})$, a contraction of 16%. The M3-M3 bonds become stronger at 20 K as a result of this contraction. Similar behaviour has been reported in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Ge}_{3.6}$ [5] on heating through the magnetic transition temperature, and in $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$ [6] when a magnetic field was applied. The changes of the M3-M3 bond lengths in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ are not as large as those seen in $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Ge}_{3.6}(34 \%)$ and $\mathrm{Gd}_{5} \mathrm{Ge}_{4}(28 \%)$. This is probably due to the large atomic size of Sn relative to that of Si and Ge . The refinement results do not show any significant changes in the Gd-Gd distances in either $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ or $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$, implying that it is the changes of the interlayer M3-M3 bond lengths that affect the nature of the magnetic interactions between Gd atoms, resulting in the magnetic transition.

4. Conclusions

Synchrotron x-ray diffraction studies have confirmed that both $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ and $\mathrm{Gd}_{5} \mathrm{Si}_{0.4} \mathrm{Sn}_{3.6}$ undergo a temperature induced structural change upon cooling, from the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Ge}_{4}$-type (high temperature) structure to the orthorhombic Pnma $\mathrm{Gd}_{5} \mathrm{Si}_{4}$-type (low temperature) one. This structural change is accompanied by a first-order magnetic transition
from nonmagnetic to ferromagnetic. The temperature induced structural transformation in $\mathrm{Gd}_{5} \mathrm{Sn}_{4}$ is incomplete on cooling to 20 K .

Acknowledgments

This work was supported by the Natural and Engineering Research Council of Canada and Fonds pour la Formation de Chercheurs et l'aide à la Recherche, Québec. We thank the staff of SSRL, in particular Apurva Mehta and Bart Johnson, for their assistance during the synchrotron x-ray diffraction experiments.

References

[1] Pecharsky V K and Gschneidner K A Jr 1998 Adv. Cryog. Eng. 651729
[2] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 784494
[3] Pecharsky V K and Gschneidner K A Jr 1997 J. Appl. Phys. Lett. 703299
[4] Levin E M, Pecharsky V K, Gschneidner K A Jr and Miller G J 2001 Phys. Rev. B 64235103
[5] Morellon L, Blasco J, Algarabel P A and Ibarra M R 2000 Phys. Rev. B 621022
[6] Pecharsky V K, Holm A P, Gschneidner K A Jr and Rink R 2003 Phys. Rev. Lett. 91197204
[7] Magen C, Arnold Z, Morellon L, Skorokhod Y, Algarabel P A, Ibarra M R and Kamarad J 2003 Phys. Rev. Lett. 91207202
[8] Gschneidner K A Jr, Pecharsky V K, Pecharsky A O, Ivtchenko V V and Levin E M 2003 J. Alloys Compounds 214303
[9] Yang H F, Rao G H, Liu G Y, Ouyang Z W, Liu W F, Feng X M, Chu W G and Liang J K 2002 J. Alloys Compounds 346190
[10] Morellon L, Algarabel P A, Magen C and Ibarra M R 2002 Phys. Rev. B 65094405
[11] Wang H B, Altounian Z and Ryan D H 2002 Phys. Rev. B 66214413
[12] Ryan D H, Elouneg-Jamróz M, van Lierop J, Altounian Z and Wang H B 2003 Phys. Rev. Lett. 90117202
[13] Yang H F, Rao G H, Liu G Y, Ouyang Z W, Liu W F, Feng X M, Chu W G and Liang J K 2004 J. Alloys Compounds 248368
[14] Sousa J B, Braga M E, Correia F C, Carpinteiro F, Morellon L, Algarabel P A and Ibarra M R 2003 Phys. Rev. B 67134416
[15] Levin E M, Gschneidner K A Jr and Pecharsky V K 2001 J. Magn. Magn. Mater. 231135
[16] Pecharsky V K and Gschneidner K A Jr 1997 J. Alloys Compounds 26098
[17] Choe W, Pecharsky V K, Pecharsky A O, Gschneidner K A Jr, Youn V G Jr and Miller G J 2000 Phys. Rev. Lett. 844617
[18] Larson A C and von Dreele R B 1994 GSAS Report No. LAUR 86-748 unpublished

[^0]: 1 Author to whom any correspondence should be addressed.

